Orthogonal rational functions, associated rational functions and functions of the second kind
نویسندگان
چکیده
Consider the sequence of polesA = {α1, α2, . . .}, and suppose the rational functions φj with poles in A form an orthonormal system with respect to a Hermitian positive-definite inner product. Further, assume the φj satisfy a three-term recurrence relation. Let the rational function φ j\1 with poles in {α2, α3, . . .} represent the associated rational function of φj of order 1; i.e. the φ (1) j\1 do satisfy the same three-term recurrence relation as the φj . In this paper we then give a relation between φj and φ (1) j\1 in terms of the so-called rational functions of the second kind. Next, under certain conditions on the poles in A, we prove that the φ j\1 form an orthonormal system of rational functions with respect to a Hermitian positive-definite inner product. Finally, we give a relation between associated rational functions of different order, independent of whether they form an orthonormal system.
منابع مشابه
COUPLED FIXED POINT THEOREMS FOR RATIONAL TYPE CONTRACTIONS VIA C-CLASS FUNCTIONS
In this paper, by using C-class functions, we will present a coupled xed problem in b-metric space for the single-valued operators satisfying a generalized contraction condition. First part of the paper is related to some xed point theorems, the second part presents the uniqueness and existence for the solution of the coupled xed point problem and in the third part we...
متن کاملThe best uniform polynomial approximation of two classes of rational functions
In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.
متن کاملNumerical solution of Troesch's problem using Christov rational functions
We present a collocation method to obtain the approximate solution of Troesch's problem which arises in the confinement of a plasma column by radiation pressure and applied physics. By using the Christov rational functions and collocation points, this method transforms Troesch's problem into a system of nonlinear algebraic equations. The rate of convergence is shown to be exponential. The numer...
متن کاملSolving Volterra's Population Model via Rational Christov Functions Collocation Method
The present study is an attempt to find a solution for Volterra's Population Model by utilizing Spectral methods based on Rational Christov functions. Volterra's model is a nonlinear integro-differential equation. First, the Volterra's Population Model is converted to a nonlinear ordinary differential equation (ODE), then researchers solve this equation (ODE). The accuracy of method is tested i...
متن کاملRational Chebyshev Collocation approach in the solution of the axisymmetric stagnation flow on a circular cylinder
In this paper, a spectral collocation approach based on the rational Chebyshev functions for solving the axisymmetric stagnation point flow on an infinite stationary circular cylinder is suggested. The Navier-Stokes equations which govern the flow, are changed to a boundary value problem with a semi-infinite domain and a third-order nonlinear ordinary differential equation by applying proper si...
متن کامل